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Decomposition
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G(s) = C(s)/R(s) = (s2 + 7s + 2)/(s3 + 9s2 + 26s + 24)

This form is obtained from the phase-variable form simply by 

ordering the phase variable in reverse  order

Alternate Representation: controller canonical form
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System matrices that contain the

coefficients of the characteristic polynomial

are called companion matrices to the

characteristic polynomial.

Phase-variable form result in lower

companion matrix

Controller canonical form results in upper

companion matrix
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Observer canonical form so named for its use in the design of observers

G(s) = C(s)/R(s) = (s2 + 7s + 2)/(s3 + 9s2 + 26s + 24)

= (1/s+7/s2 +2/s3 )/(1+9/s+26/s2 +24/s3 )

Cross multiplying

(1/s+7/s2 +2/s3 )R(s) = (1+9/s+26/s2 +24/s3 ) C(s)

And C(s) = 1/s[R(s)-9C(s)] +1/s2[7R(s)-26C(s)]+1/s3[2R(s)-24C(s)]

= 1/s{ [R(s)-9C(s)] + 1/s {[7R(s)-26C(s)]+1/s [2R(s)-24C(s)]}}
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Note that the observer form has A matrix that is transpose of the

controller canonical form, B vector is the transpose of the controller

C vector, and C vector is the transpose of the controller B vector. The

2 forms are called duals.
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Problem Represent the feedback control 

system shown in state space. Model the 

forward transfer function in cascade form.

Solution first we model the forward transfer 

function as in (a), Second we add the 

feedback and input paths as shown in (b) 

complete system. Write state equations
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1- Classical or frequency-domain technique  

2- State-Space or Modern or Time-Domain 

technique



•Advantages

- Converts differential 

equation into algebraic 

equation via transfer 

functions.

- Rapidly provides 

stability & transient 

response info.

•Disadvantages

- Applicable only to 

Linear, Time-Invariant 

(LTI) systems or their 

close approximations.

LTI limitation became a 

problem circa 1960 when 

space applications 

became important.



•Advantages

- Provides a unified 
method for modeling, 
analyzing, and 
designing a wide range 
of systems using matrix 
algebra.

- Nonlinear, Time-
Varying, Multivariable 
systems

•Disadvantages

- Not as intuitive as 
classical method.

- Calculations 
required before 
physical 
interpretation is 
apparent
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An LTI system is represented in state-space format by the

vector-matrix differential equation (DE) as:

( ) ( ) ( )

( ) ( ) ( )

( ).

x t Ax t Bu t

y t Cx t Du t

with t t and initial conditions x t

= +

= +

     0 0

The vectors x, y, and u are the state, output and input 

vectors.

The matrices A, B, C, and D are the system, input, 

output, and feedforward matrices.

Dynamic equation (s)

Measurement equations
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*System variables: Any variable that
responds to an input or initial conditions.

*State variables: The smallest set of
linearly independent system variables such
that the initial condition set and applied
inputs completely determine the future
behavior of the set.

Linear Independence: A set of variables is linearly independent if

none of the variables can be written as a linear combination of the

others.
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*State vector: An (n x 1) column vector 

whose elements are the state variables.

*State space: The n-dimensional space 

whose axes are the state variables.

Graphic representation

of state space

and a state vector
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*The order of the DE’s describing the

system.

*The order of the denominator

polynomial of its transfer function

model.

*The number of independent energy

storage elements in the system.
Remember the state variables must be linearly independent! If not, you

may not be able to solve for all the other system variables, or even write

the state equations.
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Inner state variables
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Dynamical equation

Transfer function
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Example: Transfer function of the Mass-damper-spring system

State Space Equation

Transfer Function
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As another example of the state variable characterization of a

system, consider the RLC circuit shown in the following figure.
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The state of this system can

be described in terms of a set

of variables [x1 x2], where x1

is the capacitor voltage vc(t)

and x2 is equal to the inductor

current iL(t). This choice of

state variables is intuitively

satisfactory because the

stored energy of the network

can be described in terms of

these variables.



Therefore x1(t0) and x2(t0) represent the total initial energy of the network and

thus the state of the system at t=t0.

Utilizing Kirchhoff’s current low at the junction, we obtain a first order

differential equation by describing the rate of change of capacitor voltage

L
c

c i)t(u
dt

dv
Ci −==

Kirchhoff’s voltage low for the right-hand loop provides the equation describing

the rate of change of inducator current as

cL
L viR

dt

di
L +−=

The output of the system is represented by the linear algebraic equation

)t(iRv L0 =



We can write the equations as a set of two first order differential equations in

terms of the state variables x1 [vC(t)] and x2 [iL(t)] as follows:
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The output signal is then 201 xR)t(v)t(y ==

Utilizing the first-order differential equations and the initial conditions of the

network represented by [x1(t0) x2(t0)], we can determine the system’s future

and its output.

The state variables that describe a system are not a unique set, and several

alternative sets of state variables can be chosen. For the RLC circuit, we

might choose the set of state variables as the two voltages, vC(t) and vL(t).



In an actual system, there are several choices of a set of state variables that

specify the energy stored in a system and therefore adequately describe the

dynamics of the system.

The state variables of a system characterize the dynamic behavior of a

system. The engineer’s interest is primarily in physical, where the variables

are voltages, currents, velocities, positions, pressures, temperatures, and

similar physical variables.

The State Differential Equation:

The state of a system is described by the set of first-order differential

equations written in terms of the state variables [x1 x2 ... xn]. These first-

order differential equations can be written in general form as
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Thus, this set of simultaneous differential equations can be written in matrix 

form as follows:
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n: number of state variables, m: number of inputs.

The column matrix consisting of the state variables is called the state vector

and is written as
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The vector of input signals is defined as u. Then the system can be

represented by the compact notation of the state differential equation as

uBxAx +=
This differential equation is also commonly called the state equation. The

matrix A is an nxn square matrix, and B is an nxm matrix. The state differential

equation relates the rate of change of the state of the system to the state of the

system and the input signals. In general, the outputs of a linear system can be

related to the state variables and the input signals by the output equation

uDxCy +=
Where y is the set of output signals expressed in column vector form. The

state-space representation (or state-variable representation) is comprised of

the state variable differential equation and the output equation.
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We can write the state variable differential equation for the RLC circuit as

and the output as

 xR0y =

The solution of the state differential equation can be obtained in a manner

similar to the approach we utilize for solving a first order differential equation.

Consider the first-order differential equation

buaxx +=

Where x(t) and u(t) are scalar functions of time. We expect an exponential

solution of the form eat. Taking the Laplace transform of both sides, we have
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The inverse Laplace transform of X(s) results in the solution 
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We expect the solution of the state differential equation to be similar to x(t)

and to be of differential form. The matrix exponential function is defined

as
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which converges for all finite t and any A. Then the solution of the state

differential equation is found to be
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where we note that [sI-A]-1=ϕ(s), which is the Laplace transform of ϕ(t)=eAt.

The matrix exponential function ϕ(t) describes the unforced response of

the system and is called the fundamental or state transition matrix.
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THE TRANSFER FUNCTION FROM THE STATE EQUATION

The transfer function of a single input-single output (SISO) system can be

obtained from the state variable equations.

uBxAx +=

xCy =

where y is the single output and u is the single input. The Laplace transform

of the equations

)s(CX)s(Y

)s(UB)s(AX)s(sX

=

+=

where B is an nx1 matrix, since u is a single input. We do not include initial

conditions, since we seek the transfer function. Reordering the equation
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Therefore, the transfer function G(s)=Y(s)/U(s) is
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Example:

Determine the transfer function G(s)=Y(s)/U(s) for the RLC circuit as described

by the state differential function
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Then the transfer function is
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Remark : the choice of states is not unique. 
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ANALYSIS OF STATE VARIABLE MODELS USING MATLAB

Given a transfer function, we can obtain an equivalent state-space representation

and vice versa. The function tf can be used to convert a state-space

representation to a transfer function representation; the function ss can be used

to convert a transfer function representation to a state-space representation. The

functions are shown in Figure 4, where sys_tf represents a transfer function model

and sys_ss is a state space representation.

Linear system model conversion

State-space object
DuCxy

BuAxx

+=

+=

sys=ss(A,B,C,D)
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BuAxx
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sys_ss=ss(sys_tf)

sys_tf=tf(sys_ss)
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The ss function



For instance, consider the third-order system 
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We can obtain a state-space representation using the ss function. The state-

space representation of the system given by G(s) is

num=[2 8 6];den=[1 8 16 6];

sys_tf=tf(num,den)

sys_ss=ss(sys_tf)

Matlab code Transfer function:

2 s^2 + 8 s + 6

----------------------

s^3 + 8 s^2 + 16 s + 6

a = 

x1    x2    x3

x1    -8    -4  -1.5

x2     4     0     0

x3     0     1     0

b = 

u1

x1   2

x2   0

x3   0

c = 

x1    x2    x3

y1     1     1  0.75

d = 

u1

y1   0

Continuous-time model.

Answer
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2
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Block diagram with x1 defined as the leftmost state variable. 
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We can use the function expm to compute the transition matrix for a given

time. The expm(A) function computes the matrix exponential. By contrast the

exp(A) function calculates ea
ij for each of the elements aijϵA.
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For the RLC network, the state-space representation is given as:  
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The initial conditions are x1(0)=x2(0)=1 and the input u(t)=0. At t=0.2, the state 

transition matrix is calculated as  

>>A=[0 -2;1 -3], dt=0.2; Phi=expm(A*dt)

Phi =

0.9671   -0.2968

0.1484    0.5219



The state at t=0.2 is predicted by the state transition method to be 
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The time response of a system can also be obtained by using lsim

function. The lsim function can accept as input nonzero initial conditions

as well as an input function. Using lsim function, we can calculate the

response for the RLC network as shown below.

t

u(t)

DuCxy

BuAxx

+=

+=

System

Arbitrary Input Output

t

y(t)

y(t)=output response at t

T: time vector

X(t)=state response at t

t=times at which 

response is 

computed
Initial conditions

(optional)

u=input

[y,T,x]=lsim(sys,u,t,x0)



clc;clear

A=[0 -2;1 -3];B=[2;0];C=[1 0];D=[0];

sys=ss(A,B,C,D)   %state-space model

x0=[1 1]; %initial conditions

t=[0:0.01:1];

u=0*t;  %zero input

[y,T,x]=lsim(sys,u,t,x0);

subplot(211),plot(T,x(:,1))

xlabel('Time (seconds)'),ylabel('X_1')

subplot(212),plot(T,x(:,2))

xlabel('Time (seconds)'),ylabel('X_2')
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u=3*exp(-2*t)
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