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Alternate Representation: Cascade Form

R(s) 1 1 1 C(s) _
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C(s) 24
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Alternate Representation: Cascade Form

: -4 1 0] [0
X, =—4X, +X, 0

. X=0 -3 1|X+|0
X, = —3X, + X,

. 0 0 -2 24
Xy = —2X 5, +24r - r —
y =c(t) =x, y =[1 0 0]X
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Alternate Representation: Parallel Form

C(s) 24 _ 1224 12
R() (s+2)(s+3)(s+4) (s+2) (s+3) (s+4)
x51=—2x1 +12r
X, = —3x, — 24r |
X, = —4x, +12r "
y =c(t) =X, +X, +X,
= -2 0 0] (12 |
X=0 -3 0 |X +|-24]|r
_O 0 —4_ _12 |

y=[1 1 1]X




Alternate Representation: Parallel Form Repeated roots

C(s)  (s+3 2 1 1

RGS) (+10°65+2) (417 (+1) (5+2)

X, = X5 +2r
xD3= —2X,+7r
y =c(t)=x,—-1/2x, +X,
-1 1 0] [0]
)(D =10 -1 0 [X +|2]|r
0 0 -2 S

y=[1 -1/2 1]X
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Alternate Representation: controller canonical form

G(s) = C(S)/R(s) = (s?2 + 7s + 2)/(s3® + 952 + 26s + 24)
This form is obtained from the phase-variable form simply by
ordering the phase variable in reverse order

Xl Xl
y=[2 7 1] x, y=1[1 7 2]x,
X, Associate Prof. Dx., Mohamed Ahmed Ebrahim



Alternate Representation: controller canonical form

System  matrices that contain the
coefficients of the characteristic polynomial
are called companion matrices to the
characteristic polynomial.

Phase-variable form result In lower
companion matrix

Controller canonical form results in upper
companion matrix
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Alternate Representation: observer canonical form

Observer canonical form so named for its use in the design of observers
G(s) = C(S)/R(s) = (s?2 + 7s + 2)/(s® + 952 + 26s + 24)
= (1/s+7/s% +2/s3)/(1+9/s+26/s? +24/s3)

Cross multiplying
(1/s+7/s? +2/s3 )R(S) = (1+9/s+26/s? +24/s3 ) C(s)
And C(s) = 1/s[R(s)-9C(s)] +1/s?[7R(s)-26C(s)]+1/s3[2R(s)-24C(S)]
= 1/s{ [R(S)-9C(s)] + 1/s {[7TR(s)-26C(s)]+1/s [2R(s)-24C(s)]}}

CO——-C O——7CC ()

R(s) O -

'Cs)

R(s)

im



Alternate Representation: observer canonical form

[

X, =-9X, +X, +r
xD2 = —26X, + X, /T
xD:,,:—24x1 +2r
y =c(t) =x,
! 9 1 0 1
X =|-26 0 1| X +|7]|r
24 0 0] K
y=1[1 0 0]X

Note that the observer form has A matrix that is transpose of the
controller canonical form, B vector is the transpose of the controller
C vector, and C vector is the transpose of the controller B vector. The

2 forms are called duals.
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Feedback Control System Example

R() + < E(s) 100(s + 5) C(s)

(s +2)(s + 3)

Problem Represent the feedback control
system shown in state space. Model the
forward transfer function in cascade form.

Solution first we model the forward transfer
function as in (a), Second we add the
feedback and input paths as shown in (b)
complete system. Write state equations

0
XDl =—-3X, +X, R() O

X, = - 2X, +100(r -c)

butc =5x, + (X, —3X,) =2X, +X,
J




Feedback Control System Example

O
xDl =—-3X, +X,

X, =—200x, —102x, +100r

y = c(t) =2x, +X,

J -3 1 0
X = X + r
{—200 —102} LOO}

y = [2 1]X
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Form Transfer Function Signal-Flow Diagram State Equations

State-space forms for

Phase 1
varlable m * (S + 3)
Note: y = c(t)
—-1/2  3/2
Parallel Y tI76
1 (s +3)
Cascade Gid) G516
Controller |
canonical Fri e Y
Observer 1 + iz
canonical 2
10 24
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PP | Modeling in the Time Domain - State-Space | g

Mathematical Models

1- Classical or frequency-domain technique

2- State-Space or Modern or Time-Domain
technique



PP | Classical or Frequency-Domain Technique

* Advantages *Disadvantages
- Converts differential - Applicable only to
equation into algebraic Linear, Time-Invariant
equation via transfer (LTI) systems or their
functions. close approximations.

- Rapidly provides ——
o ) LTI limitation became a
stability & transient problem circa 1960 when

space applications

response Info. became important.




State-Space or Modern or Time-Domain <

Technique -

*Advantages *Disadvantages

- Provides a unified "
method for modeling, - Not as Intuitive as

analyzing, and classical method.
designing a wide range _ Calculations
grgse)ésrtaems using matrix required before

- Nonlinear, Time- PhyS'Cal _——
Varying, Multivariable Interpretation Is
systems apparent



An LTI system is represented in state-space format by the
vector-matrix differential equation (DE) as:

X(t) = Ax(t) + Bu(t)  Dynamic equation (s)
X(t) = CXx(t) + Du(t)  Measurement equations
with t > t, and initial conditions x(t,).

The vectors X, y, and u are the state, output and input

vectors.
The matrices A, B, C, and D are the system, input,

output, and feedforward matrices.
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*System variables: Any variable that
responds to an input or initial conditions.

*State variables: The smallest set of
linearly independent system variables such
that the initial condition set and applied
inputs completely determine the future
behavior of the set.

Linear Independence: A set of variables is linearly independent if
none of the variables can be written as a linear combination of the
others.
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*State vector: An (n x 1) column vector
whose elements are the state variables.

*State space: The n-dimensional space
whose axes are the state variables.

State space

Graphic representation
of state space
ate vector, x() and a state vector

or trajectory

wn wn n
- - -t
I

ate vector, x(4)

Associate Prof. Dr. Mohamed Ahmed Ebrahim



‘ The minimum number of state variables is equal to:

*The order of the DE’s describing the
system.

*The order of the denominator
polynomial of its transfer function

model.

*The number of independent energy
storage elements in the system.

Remember the state variables must be linearly independent! If not, you
may not be able to solve for all the other system variables, or even write

the state equations.

Associate &£'rof. ‘Dr. Mohamea Ahmea ‘L.orahim



Dynamic equation

X(t) =

%X(t) = Ax(t) + Bu(t) | State equation

y(t) = Cx(t) + Du(t)

State variable
e

(%)
N0

| X, (1)

nx1

State space

nxn

u(t) =

r-

U (t) |
u, (t)

U (1)

input

nxr

rx1

y(t) =

Y, (1) ]
Y, (t)

Y,(t)

p- output

pxn

Output equation

px1

X(0) =

 %(0) ]
X,(0)

pXxr

%,0).

nx1



u (t)
u, (t)

u (t)

Y, (t)
Y, (t)

y,(t)

u (t) X(

t) PR
+ 7. )

F-

;




Dynamical equation :> Transfer function

X(t) = AX(t) + Bu(t)
y(t) = Cx(t) + Du(t)

Laplace transfor

sX(s)—x(0) = AX(s)+BU(s)
Y (s)=CX(s)+DU(s)

assume x(0)=0
X (s)= (sl —A)'BU(s)
Y (s)=[C(sl = A) "B+ DJU (s)

/ matrix
Transfer function



Example

let
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Y1

oZ‘n—\o
-

Y,
L K A
M, M, i (t)
B, B, B,
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R, L,
WA
i +
|
ea (t) a eb (t
Armature circuit w

e,(t) = R,i, +&, + La%

dt

di -R, kb 1
= |, ——w, +—¢€,

dt L L, L
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Example

By Newton’s Law

L F =My
3, r—ky—by=my let
M T 1~ YT
:> X—y——by—ky+1r
y(), y(t) 2 VIS
b
r(t) :_sz— X, +—U
X, = X,
r:external force B X, = _L X, X, +—U

k: spring

b 1

M M
b: coef ficient of viscous friction X 0 1 X 0
X, M X, M

X=Y,X=Y

= My+by+ky=r



State Space Equation ) . L T )
X = Ax+ Bu Forexample : e _L _£ Ly i y
X2 M M X2 M
y =Cx+ Du '
y=[1 0]{ l}LO-U
X2
Transfer Function W
G(s) = Y(s) For example : G(s) = —; b
) a,s” +a,5+a,

Example: Transfer function of the Mass-damper-spring system
d’y dy ,

dt? +bdt+ky_u(t) X:[Xl Xz]T
Ms?Y (s) +bsY(s) + kY (s) =U (s)

Y (s 1

X5 _G(9)=—,

U (s) Ms® + bs+k

M




Example | [0 1 0 fx
X, =l 0 =4 3 | X |+
X, -1 -1 -2] X,
MIMOQO system s SR
_ _ X
n®]_[1 0 0]
y,()| [0 0 1] *
L ] X,
(sl — A" = adj(sl - A)
sl — A
5% +65+11
. 1 ~3
4 2)+3+3
s(s+4)(s+2)+3+3s il

G(s)=[C(sl = A) "B+ D]
B 1 S+2 3
24652 +4115+3| —(s+1)  s(s+4)

S+2 3
s% +2 3s
—s—1 s°+4s

} Transfer function



As another example of the state variable characterization of a
system, consider the RLC circuit shown in the following figure.

I L
T C
Current
source
1. . 1 (¢.
El:ELILZ’ EZ :E cht

The state of this system can
be described in terms of a set
of variables [x; X,], where X;
IS the capacitor voltage v(t)
and X, is equal to the inductor
current i (t). This choice of
state variables is intuitively
satisfactory = because the
stored energy of the network
can be described in terms of
these variables.



Therefore x,(t;) and Xx,(t,) represent the total initial energy of the network and
thus the state of the system at t=t,,.

Utilizing Kirchhoff’'s current low at the junction, we obtain a first order
differential equation by describing the rate of change of capacitor voltage

i - d(;’ —u(t) —i,

Kirchhoff’s voltage low for the right-hand loop provides the equation describing
the rate of change of inducator current as

m
dt

The output of the system is represented by the linear algebraic equation

=R (1)

—-R1, +V,



We can write the equations as a set of two first order differential equations in
terms of the state variables x, [v(t)] and X, [i, ()] as follows:

dvc i dx 1
= dt _U(t)_IL = > dtl ___X2+_u(t)
LdIL _ R = > dX2 — X X
E—— IL +VC dt L 1 L 2

The output signal is then Y, (t) =V, (t) =R X,

Utilizing the first-order differential equations and the initial conditions of the
network represented by [x,(t;) X,(ty)], we can determine the system’s future
and its output.

The state variables that describe a system are not a unique set, and several
alternative sets of state variables can be chosen. For the RLC circuit, we
might choose the set of state variables as the two voltages, v(t) and v(t).



In an actual system, there are several choices of a set of state variables that
specify the energy stored in a system and therefore adequately describe the
dynamics of the system.

The state variables of a system characterize the dynamic behavior of a
system. The engineer’s interest is primarily in physical, where the variables
are voltages, currents, velocities, positions, pressures, temperatures, and
similar physical variables.

The State Differential Equation:

The state of a system is described by the set of first-order differential
equations written in terms of the state variables [x; X, ... X]. These first-
order differential equations can be written in general form as

X, =a, X, +a,X, +...a,X, +bu, +---b, U_
X, =8, X, +8,,X, +...8,, X +b, U +---b, U_

X, =a,X,+a.,X,+...a, X, +b U +---b_ uU_



Thus, this set of simultaneous differential equations can be written in matrix
form as follows:

X1 d;; A oo Ay X1 B b b ar N
9N 1m U,
d| X, N Ay 8yttt Aoy || Xy . .
a = . . +
b b u
. Mn1 nm_| [Ym_]
_Xn_ _anl A, v ann_ _Xn_

n: number of state variables, m: number of inputs.

The column matrix consisting of the state variables is called the state vector
and is written as




The vector of input signals is defined as u. Then the system can be
represented by the compact notation of the state differential equation as

X=AX+BuU

This differential equation is also commonly called the state equation. The
matrix A is an nxn square matrix, and B is an nxm matrix. The state differential
equation relates the rate of change of the state of the system to the state of the
system and the input signals. In general, the outputs of a linear system can be
related to the state variables and the input signals by the output equation

y=CXx+Du

Where y is the set of output signals expressed in column vector form. The
state-space representation (or state-variable representation) is comprised of
the state variable differential equation and the output equation.



We can write the state variable differential equation for the RLC circuit as

0 —% 1
X = 1 R X+ C
AL 0
L L _ .
and the output as
y=[0 R]x

u(t)

The solution of the state differential equation can be obtained in a manner
similar to the approach we utilize for solving a first order differential equation.

Consider the first-order differential equation

X =axX+bu

Where x(t) and u(t) are scalar functions of time. We expect an exponential
solution of the form e& Taking the Laplace transform of both sides, we have



s X(s) — X, =aX(s)+bU(s)

therefore,

X (0) N b
s—a S-—a

X(S) = U(s)

The inverse Laplace transform of X(s) results in the solution

t
X (t) = e*x(0) + j e* ™ pu(r)dr
0

We expect the solution of the state differential equation to be similar to x(t)
and to be of differential form. The matrix exponential function is defined
as

242 k4K
M oAt AT
2! K!

+ .-



which converges for all finite t and any A. Then the solution of the state
differential equation is found to be

t
X (1) = e”'x(0) + j e IB (1) dr
0

X(s) = [sl—A["x(0) +[sI - A]'BU(s)

where we note that [sI-A]1=¢(s), which is the Laplace transform of ¢(t)=eA.
The matrix exponential function ¢(t) describes the unforced response of
the system and is called the fundamental or state transition matrix.

X (t) = d(t) X(0) + j o(t—t)Bu(t)dt



THE TRANSFER FUNCTION FROM THE STATE EQUATION

The transfer function of a single input-single output (SISO) system can be
obtained from the state variable equations.

X=AX+BuU
y=CX

where v is the single output and u is the single input. The Laplace transform
of the equations

sX(s) = AX(s)+BU(s)
Y (s) = CX(s)

where B is an nx1 matrix, since u is a single input. We do not include initial
conditions, since we seek the transfer function. Reordering the equation



[sI—A]X(s) =BU(s)
X(s) =[sI-A['BU(s) = ¢(s)BU(s)
Y (s) =Co(s)BU(s)

Therefore, the transfer function G(s)=Y(s)/U(s) is

G(s) =Co(s)B

Example:

Determine the transfer function G(s)=Y(s)/U(s) for the RLC circuit as described
by the state differential function

X+

o+
=
<
||
=)
Py
X

|0+

0
B
il



[s1-A]

Then the transfer function is

L [-E
I S)=[SI-A| =——
s+ o
L. A(S):SZ+B$+i
L LC
s _
| R
G(s)=[0 R] A(s) CAQB) || ¢
1 S 0
| LA(S)  A(S)
G(s)zR/ch RR/LC1
AS) g2 Rgy
L LC




Remark : the choice of states is not unique.

T
e (f) i(t)) c_ ef(t) Ri(t)+ L :j(t) + 1_[ 1(t)dt = e, (t)

X, (t) =i(t) {)ﬂ{_i ‘i}{xl}{qe,(t)
txz(t):ji(t)dt mmmp 1|1 0 ] |0
y(t) = i(t) y(t) =1 0]&}
g (1) =i(t) YR AL
% (t) =i(t o P I N B e e
Rt = () m— H b OM M'(t)
y(t) =1(t) y(t)=[L ot{j

exist a mapping



ANALYSIS OF STATE VARIABLE MODELS USING MATLAB

Given a transfer function, we can obtain an equivalent state-space representation
and vice versa. The function tf can be used to convert a state-space
representation to a transfer function representation; the function SS can be used
to convert a transfer function representation to a state-space representation. The

functions are shown in Figure 4, where sys_tf represents a transfer function model
and sys_ss is a state space representation.

|
i

sys=ss(A,B,C,D)

The ss function

Linear system model conversion



For instance, consider the third-order system

Y(s)  25°+8s+6
R(s) s°+8s°+16s+6

G(s) =

We can obtain a state-space representation using the ss function. The state-
space representation of the system given by G(s) is

Transfer function:
Matlab code T

s"3+8s"2+16s+6

num=[2 8 6];den=[1 8 16 6],

sys_tf=tf(num,den) . A
) LN
x2 4 0 O

SyS ss=ss(sys tf)

b=
8 —4 -15] (2] e
A=l 4 0 0 |,B=|0 x3 0
0 1 0 | 0 CilﬂixiJ%

d=
ul

C=[1 1 0.75]and D =|0] n o

Continuous-time model.



R(s)

C=[1 1 0.75]and D =|0]

(—8
4

0

—4
0
1

—1.5]

0
0

1/s
/
-8

4

v

1/s

v

-1.5

v

1/s

v

0.75

Block diagram with x; defined as the leftmost state variable.



t
X (t) = e”'x(0) + j e OB u(t)dr
0

x (1) = d(t) X (0) + jq)(t _1)Bu(t)dt

We can use the function expm to compute the transition matrix for a given
time. The expm(A) function computes the matrix exponential. By contrast the
exp(A) function calculates e?; for each of the elements a;€eA.

For the RLC network, the state-space representation is given as:

a=l? 74| B=|? .C=[1 0]and D=[0]
1 -3 0

The initial conditions are x,(0)=x,(0)=1 and the input u(t)=0. At t=0.2, the state
transition matrix is calculated as Phi =

>>A=[0 -2;1 -3], dt=0.2; Phi=expm(A*dt) 0.9671 -0.2968
0.1484 0.5219



The state at t=0.2 is predicted by the state transition method to be

X, ]  [0.9671 -0.2968][x,| [0.6703
X,| . 101484 05219 |[x,| . |0.6703

t=0.2 t=0

The time response of a system can also be obtained by using Isim
function. The Isim function can accept as input nonzero initial conditions
as well as an input function. Using Isim function, we can calculate the
response for the RLC network as shown below.

u(t) System y(t)
Arbitrary Input] X = AX + BuU | Output

—p
y=Cx+Du

[
»

t

t=times at which
y(t)=output response at t response is
computed

Initial conditions
T: time vector

(optional)

X(t)=state response at t
\ u=input /
\

[y, T,x]=Isim(sys,u,t,x0)




Matlab code

clc;clear
A=[0 -2;1 -3];B=[2;0];C=[1 O];D=[0];
sys=ss(A,B,C,D) %state-space model
X0=[1 1]; %initial conditions
t=[0:0.01:1];

u=0*t; %zero input

[y, T,x]=Isim(sys,u,t,x0);
subplot(211),plot(T,x(:,1))
xlabel("Time (seconds)’),ylabel('X 1"
subplot(212),plot(T,x(:,2))
xlabel("Time (seconds)’),ylabel('X_2"

il u=3*t

N _—
_— —

10— —
. -

r r r r r r r r r
0 01 0.2 03 04 05 06 0.7 08 0.9 1
Time (seconds)

0.8~

=
0.6

,\7 o / o

04 r r r r r r r r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (seconds)

u=0*t

r r r
0.4 0.6 0.8
Time (seconds)

r r r
0.4 0.6 0.8
Time (seconds)

u=3*exp(-2*t)

r r r r r r
0.4 0.5 0.6 0.7 0.8 0.9 1

Time (seconds)

r r r r r r
0.4 0.5 0.6 0.7 0.8 0.9 1

Time (seconds)
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